Genetic characterization of the carotenoid biosynthetic pathway in Methylobacterium extorquens AM1 and isolation of a colorless mutant.
نویسندگان
چکیده
Genomic searches were used to reconstruct the putative carotenoid biosynthesis pathway in the pink-pigmented facultative methylotroph Methylobacterium extorquens AM1. Four genes for putative phytoene desaturases were identified. A colorless mutant was obtained by transposon mutagenesis, and the insertion was shown to be in one of the putative phytoene desaturase genes. Mutations in the other three did not affect color. The tetracycline marker was removed from the original transposon mutant, resulting in a pigment-free strain with wild-type growth properties useful as a tool for future experiments.
منابع مشابه
Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance
BACKGROUND The toxicity of alcohols is one of the major roadblocks of biological fermentation for biofuels production. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, has been engineered to generate 1-butanol from cheap carbon feedstocks through a synthetic metabolic pathway. However, M. extorquens AM1 is vulnerable to solvent stress, which impedes further devel...
متن کاملCharacterization and nucleotide sequence of pqqE and pqqF in Methylobacterium extorquens AM1.
Methylobacterium extorquens AM1 pqqEF are genes required for synthesis of pyrroloquinoline quinone (PQQ). The nucleotide sequence of these genes indicates PqqE belongs to an endopeptidase family, including PqqF of Klebsiella pneumoniae, and M. extorquens AM1 PqqF has low identity with the same endopeptidase family. M. extorquens AM1 pqqE complemented a K. pneumoniae pqqF mutant.
متن کاملCharacterization of two methanopterin biosynthesis mutants of Methylobacterium extorquens AM1 by use of a tetrahydromethanopterin bioassay.
An enzymatic assay was developed to measure tetrahydromethanopterin (H(4)MPT) levels in wild-type and mutant cells of Methylobacterium extorquens AM1. H(4)MPT was detectable in wild-type cells but not in strains with a mutation of either the orf4 or the dmrA gene, suggesting a role for these two genes in H(4)MPT biosynthesis. The protein encoded by orf4 catalyzed the reaction of ribofuranosylam...
متن کاملOxalyl-coenzyme A reduction to glyoxylate is the preferred route of oxalate assimilation in Methylobacterium extorquens AM1.
Oxalate catabolism is conducted by phylogenetically diverse organisms, including Methylobacterium extorquens AM1. Here, we investigate the central metabolism of this alphaproteobacterium during growth on oxalate by using proteomics, mutant characterization, and (13)C-labeling experiments. Our results confirm that energy conservation proceeds as previously described for M. extorquens AM1 and oth...
متن کاملQscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1.
A new gene, qscR, encoding a LysR-type transcriptional regulator that is a homolog of CbbR, has been characterized from the facultative methylotroph Methylobacterium extorquens AM1 and shown to be the major regulator of the serine cycle, the specific C1 assimilation pathway. The qscR mutant was shown to be unable to grow on C1 compounds, and it lacked the activity of serine-glyoxylate aminotran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 69 12 شماره
صفحات -
تاریخ انتشار 2003